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1. 

In a very interesting paper Bhat [1] proposed a set of characteristic orthogonal polynomials
for use in the Rayleigh–Ritz method for the study of the vibration of rectangular plates.
He showed that the procedure for obtaining the set of orthogonal polynomials is simple,
and that the method yields results superior to other methods for lower modes, particularly
when the plate has one or more free edges. The method has also been applied among others
in the following problems: the determination of natural frequencies and mode shapes of
a rotating uniform cantilever beam with a tip mass [2]; the determination of
natural frequencies of transverse vibration of thin, rectangular plates of non-uniform
thickness [3]; the determination of natural frequencies of edge restrained tapered
rectangular plates [4].

It is the purpose of the present paper to present a variant of Bhat’s method, based on
use of the Rayleigh–Schmidt method of undetermined powers, [5]. This procedure allows
the use of a lower number of orthogonal polynomials. This is an important aspect in
various situations which require the use of a large number of polynomials in the Bhat’s
method and generate some numerical instability. This situation can be generally avoided
with the present variant.

2.       

In the case of beams the shape function is assumed to be a linear combination of
orthogonal polynomials;

u(x)= s
N

i=0

cipi (x). (1)

The set of orthogonal polynomial is generated by using the classical Gram–Schmidt
procedure as follows:

The first member p0(x) is chosen as p0(x)= s5
i=0 aixni, where the coefficients ai are

determined from the boundary conditions and the ni are adjustable parameters. The
exponents ni are determined in such a way as to minimize or nearly minimize the
approximate eigenvalues.

The other members of the orthogonal set of polynomials in the interval [a, b] are
generated as follows:

p1(x)= (x−A1)p0(x), pi (x)= (x−Ai )pi−1(x)−Bipi−2(x), iq 1.

Ai =g
b

a

xw(x)p2
i−1(x) dx/ g

b

a

w(x)p2
i−1(x) dx,
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Bi =g
b

a

xw(x)pi−1(x)pi−2(x) dx/ g
b

a

w(x)p2
i−2(x) dx,

where w(x) is the weighting function. For a uniform beam, w(x) is unity, and in the case
of a tapered beam, w(x) can be conveniently chosen as the non-uniformity of the beam.
In the present approach p0(x) satisfies all the boundary conditions, both geometric and
natural; the other members of the orthogonal set satisfy only the geometric boundary
conditions.

In the case of plates the shape function is assumed to be

u(x, y)= s
N

i=0

s
M

j=0

cijpi (x)qj (y), (2)

where pi and qj are obtained by means of the procedure described above and both p0(x)
and q0(x) have adjustable exponents. Application of the Rayleigh–Ritz method yields an
eigenvalue problem of the type [K]−v2[M]=0. Solution of this eigenvalue equation
yields the natural frequencies.

3.  

Tables 1 and 2 show values of zl1, where l1 =z(rA/EI)v1L2 is the fundamental
frequency coefficient, for a uniform beam of length L, elastically restrained against
rotation and translation. The values obtained with the present method using only one
adjustable exponent in p0(x), are compared with the exact values reported by Maurizi et al.
[6] and Rao and Mirza [7], respectively. Also, the values obtained by means of Bhat’s
method of characteristic orthogonal polynomials are included. Excellent agreement was
obtained between the present values and the exact results.

Table 3 depicts a comparison of values of the fundamental frequency coefficient
V1 =z(rh0/D0)v1a2 for a rectangular tapered plate elastically restrained against rotation
and translation. The plate thickness is described by h(x)= h0(1+ a(x/a)). The values
were obtained by means of the classical Bhat’s method with eight terms in each

T 1

Values of zl1 for a uniform beam subject to a rotational restraint at x=0 and a translational
restraint at x=1. (T1 =a, R2 =0, R1 = r1L/EI, T2 = t2L3/EI).

R1 T2 (I) (II) (III) N in eq. (1)

0·00 0·1 0·739730 0·739730 0·739730 4
0·00 1000·0 3·126081 3·126681 3·126083 9
0·01 0·1 0·757696 0·757696 0·757696 2
0·01 1000·0 3·127658 3·128258 3·127659 10
0·10 0·1 0·878208 0·878208 0·878208 2
0·10 1000·0 3·141553 3·142162 3·141554 11
1·00 0·1 1·287038 1·287038 1·287038 5
1·00 1000·0 3·256645 3·257324 3·256646 10

1000·00 0·1 1·888235 1·888235 1·888235 5
1000·00 1000·0 3·894008 3·895111 3·894011 9

(I) reference [6]; (II) classical Bhat’s method with N=12 in equation (1); (III) present approach.
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T 2

Values of zl1 for a generally restrained Bernoulli—Euler beam. (R1 = r1L/EI, T1 = t1L3/EI,
R2 = r2L/EI, T2 = t2L3/EI, T1 =T2/100=T, R1 =R2/100=R).

T R (I) (II) (III) N in eq. (1)

0·10 0·01 1·238122 1·238123 1·238123 11
0·10 1000·00 1·691790 1·691790 1·691790 5
1·00 0·01 1·531633 1·533096 1·531634 6
1·00 1000·00 2·291046 2·291046 2·291046 11

10·00 0·01 2·324034 2·324640 2·324034 8
10·00 1000·00 2·720894 2·721326 2·720899 11

100·00 0·01 3·107827 3·107912 3·107828 12
100·00 1000·00 3·844697 3·845066 3·844699 10

(I) reference [7]; (II) classical Bhat’s method with N=13 in equation (1); (III) present approach.

direction, and the present approach. In almost all cases a very good agreement is
obtained with the use of only 3 terms in each direction and only one adjustable exponent
in p0(x) and q0(x).

T 3

Values of V1 of a rectangular plate with edge restraints (R1 =R2 =R4 =S1 =S2 =S4 =a,
R3 = r3a/D0, S3 = t3a3/D0, R3 =S3, l= a/b, where the notations follow those of reference

[4]).

a l R3 (I) (II) N=M in eq. (2)

0·0 0·5 0 22·641 22·676 4
1 22·706 22·743 3

10 22·995 23·010 3
100 23·951 23·944 3

1000 24·513 24·505 3
a 24·578 24·581 3

0·2 0·5 0 24·861 24·907 3
1 24·916 24·961 3

10 25·182 25·200 3
100 26·172 26·142 3

1000 26·907 26·881 3
a 26·985 26·988 4

0·0 1·0 0 23·927 23·980 3
1 24·111 24·162 3

10 24·893 24·920 3
100 28·223 28·230 3

1000 34·445 34·465 3
a 35·985 35·990 3

0 26·278 26·337 3
1 26·435 26·495 3

0·2 1·0 10 27·163 27·198 3
100 30·206 30·216 3

1000 37·379 37·339 3
a 39·510 39·514 4

(I) classical Bhat’s method with N=M=8 in equation (2); (II) present approach.
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4. 

A variant of Bhat’s method of orthogonal polynomials, based on the use of
undetermined parameters has been developed. In this approach the first member, in the
orthogonal set of polynomials, is constructed with adjustable exponents so as to satisfy
all the boundary conditions, both geometrical and natural. The other members of the
orthogonal set satisfy only the geometric boundary conditions. This procedure refines the
shape function p0(x) by optimizing the exponents ni and consequently allows the use of
a lower number of terms in the approximating function.

The method has been applied to the determination of natural frequencies of generally
restrained beams and plates. The analysis of Tables 1–3 show that the present approach
implies the use of a lower number of polynomials and yields excellent results, even if only
one adjustable exponent is used. This situation is particularly relevant in those cases that
require the use of a large number of orthogonal polynomials in the classical method
proposed by Bhat.
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